Unit 1 - Introduction to Data Structures

1.1 Definitions

o Data — Raw facts and figures (e.g., numbers, text).

o Information — Processed data that is meaningful.

o Data Structure (DS) — A way of organizing, storing, and managing data
efficiently in memory.

e Abstract Data Type (ADT) — A mathematical model that defines data and
operations, independent of implementation (e.g., Stack, Queue, List).

1.2 Types of Data Structures

1. Primitive DS — Integer, Float, Character, Pointer.
2. Non-Primitive DS
o Linear — Array, Linked List, Stack, Queue.
o Non-Linear — Tree, Graph.

1.3 Complexity Analysis

e Time Complexity — How much time an algorithm takes.
e Space Complexity — How much memory it consumes.

Asymptotic Notations

e O (Big-O) — Worst case upper bound.

e Q (Omega) — Best case lower bound.

e O (Theta) — Average case / tight bound.
Example:

Linear Search — 0 (n) in worst case.
Binary Search — 0 (1og n) in worst case.

1.4 Advantages of DS

o Efficient data storage.

o Faster access and retrieval.
e Reusability of code.
e Helps in complex algorithm design (Graphs, Trees).

1.5 Unit 1 Theory Questions

Q1. Define Data Structure. Explain its types.

Answer: Data Structure is... (explained above). Types — Primitive, Non-Primitive
(Linear & Non-Linear).

Q2. What is an ADT? Give examples.
Answer: ADT is... Examples: Stack, Queue, List, Set.

Q3. Explain asymptotic notations with examples.
Answer: O, Q, ® with example of searching.

Q4. Differentiate between Array and Linked List.

Answer: Array = static, contiguous memory, random access. Linked List = dynamic,
non-contiguous, sequential access.

1.6 Unit 1 Programming PYQs (with C Solutions)

Q1. Write a C program for Linear Search.

#include <stdio.h>

int main() {
int arr[50], n, key, i, flag = 0;
printf("Enter size of array: ");
scanf("%d", &n);
printf("Enter %d elements: ", n);
for(i=0;i<n;i++)

scanf("%d", &arr[i]);

printf("Enter element to search: ");

scanf("%d", &key);

for(i=0;i<n;i++) {
if(arr[i] == key) {
printf("Element found at position %d\n", i+1);
flag=1;

break;

}
if(flag == 0)
printf("Element not found.\n");

return 0;

}

Time Complexity: O(n)

Q2. Write a C program for Binary Search.

#include <stdio.h>

int main() {
int arr[50], n, key, i, low, high, mid;
printf ("Enter size of sorted array: ");
scanf ("%d", é&n);
printf ("Enter %d sorted elements: ", n);
for(i = 0; 1 < n; i++)

scanf ("%d", &arr[i]):;

printf ("Enter element to search: ");
scanf ("sd", &key);

low = 0; high = n-1;
while (low <= high) {

mid = (low + high) / 2;

if (arr[mid] == key) {
printf ("Element found at position %d\n", mid+1);
return 0;

} else if(arr[mid] < key)
low = mid + 1;

else
high = mid - 1;

}
printf ("Element not found.\n");

return 0;

}

Time Complexity: O(log n)

Unit 2 — Arrays & Strings

2.1 Arrays

Definition:
An array is a collection of elements of the same data type stored in contiguous
memory locations and accessed using an index.

e 1D Array — Linear list of elements.

e 2D Array — Matrix (rows & columns).
e Multi-Dimensional Array — More than 2D.

Advantages:

e Easy access (random access by index).
e Memory efficient for fixed size.

Disadvantages:

o Fixed size (cannot grow/shrink).
o Insertion/Deletion costly (O(n)).

& Diagram: 1D Array

Index — 0 1 2 3 4
Value - 10 20 30 40 50

s Diagram: 2D Array

Col0 Coll Col2
RowO 10 20 30
Rowl 40 50 60
Row2 70 80 90

2.2 Strings

Definition:
A string is an array of characters ending with a special character '\o0".

Example:

char str[] = "Hello"™;

S Stored as:

IHI Vel Vll llV loV I\Ol

Common String Operations:
o strlen() — Find length

* strepy() — Copy
o strcat() — Concatenate

e stremp() — Compare

2.3 Unit 2 Theory Questions

Q1. Define array. What are its advantages and disadvantages?
Ans: Array is a collection of elements of same type stored contiguously. Advantages —
fast access, memory efficient. Disadvantages — fixed size, costly insertion/deletion.

Q2. Differentiate between 1D and 2D array.

e 1D — Linear list (index 0..n-1)
e 2D — Matrix (rows & columns).

Q3. Explain string and its operations with examples.
Ans: String = array of characters terminated by \0. Operations: strlen, strcpy, strcat,
stremp.

Q4. What are applications of arrays?

e Matrices, Polynomial representation, Searching & Sorting, Database tables.

2.4 Unit 2 PYQs (Programming in C)

Q1. Write a C program for Insertion in Array.

#include <stdio.h>

int main() {
int arr([50], n, i, pos, val;
printf ("Enter size of array: ");
scanf ("%d", é&n);

printf ("Enter %d elements: ", n);
for(i = 0; i < n; 1i++)
scanf ("%d", &arr[il]):;

printf ("Enter position and value to insert:

scanf ("%d %d", &pos, &val);

for(i = n; 1 >= pos; i--)
arr[i] = arr[i-117;

arr[pos—-1] = val;

n++;

printf ("Array after insertion: ");
for(i = 0; 1 < n; i++)

printf("sd ", arr[i]);
return 0O;

Time Complexity: O(n)

Q2. Write a C program for Deletion in Array.

#include <stdio.h>

int main() {
int arr[50], n, i, pos;
printf ("Enter size of array: ");
scanf ("%d", &n);

printf ("Enter %d elements: ", n);
for(i = 0; 1 < n; i++)
scanf ("%d", &arr[il]):;

printf ("Enter position to delete: ");
scanf ("%d", &pos);

for(i = pos-1; 1 < n-1; i++)
arr[i] = arr[i+1];
n--;

printf ("Array after deletion: ");
for(i = 0; 1 < n; i++)

printf("sd ", arr[i]);
return 0O;

Time Complexity: O(n)

Q3. Write a C program to reverse a string.

#include <stdio.h>
#include <string.h>
int main() {
char str[50], rev[50];
int i, j, len;
printf ("Enter a string: ");

gets (str);
len = strlen(str);
3 = 0;
for(i = len-1; 1 >= 0; i--) {
rev[j++] = str[i];
}
rev[j] = "\0';
printf ("Reversed string = %$s\n", rev);

return 0;

Time Complexity: O(n)

Q4. Write a C program to check if a string is palindrome.

#include <stdio.h>

#include <string.h>

int main() {
char str[50];
int i, len, flag = 0;
printf ("Enter a string: ");
gets(str);

len = strlen(str);
for(i = 0; 1 < len/2; 1i++) {
if(str[i] != str[len-i-1]) {
flag = 1;
break;

}

if(flag == 0)

printf ("Palindrome\n") ;
else

printf ("Not Palindrome\n");
return 0O;

Time Complexity: O(n)

Unit 3 — Linked List

3.1 Introduction

Definition:

A linked list is a linear data structure where elements (called nodes) are connected using
pointers.

Each node contains:

1. Data — The value of the element.
2. Pointer/Link — Address of the next node.

Unlike arrays (stored in contiguous memory), linked lists are stored dynamically in
memory.

3.2 Types of Linked Lists

1. Singly Linked List (SLL):
o Each node points to the next node.
o Last node points to NULL.

s& Diagram: Singly Linked List

Head - [Data|Next] - [Data|Next] — [Data|NULL]

2. Doubly Linked List (DLL):
o Each node has 2 pointers: prev and next.
o Allows traversal in both directions.

s® Diagram: Doubly Linked List

NULL « [Prev|Data|Next] o [Prev|Data|Next] o [Prev|Data|NULL]

3. Circular Linked List (CLL):
o Last node points back to the first node.
o Can be singly or doubly circular.

s Diagram: Circular Linked List

Head - [Data|Next] - [Data|Next] — [Data]|Next] -+
A o e e e e e e e e e e e e e +

3.3 Applications of Linked List

e Dynamic memory allocation.

o Implementation of stacks & queues.

e Polynomial & sparse matrix representation.
e Music/video playlist navigation.

3.4 Unit 3 Theory Questions

Q1. What is a linked list? How is it different from an array?
Ans: A linked list is a dynamic data structure where nodes are connected by pointers.

e Array — Fixed size, contiguous memory.
o Linked List — Dynamic size, scattered memory, flexible insertion/deletion.

Q2. Explain types of linked lists with diagrams.
Ans: SLL, DLL, CLL — explained above.

Q3. What are advantages and disadvantages of linked list?

e Advantages — Dynamic size, efficient insertion/deletion.
o Disadvantages — No random access, extra memory for pointers.

Q4. Write real-life applications of linked list.
Ans: Stacks, Queues, Polynomial representation, Dynamic tables, Playlists.

3.5 Unit 3 PYQs (Programming in C)

Q1. Write a C program to create a singly linked list and display it.

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* next;

b

int main() {

struct Node *head, *newNode, *temp;
int n, i, wval;

head = NULL;
printf ("Enter number of nodes: ");
scanf ("%d", &n);

for(i = 0; 1 < n; i++) {
newNode = (struct Node*)malloc (sizeof (struct Node));
printf ("Enter data for node %d: ", i+1l);
scanf ("%d", &val);
newNode->data = val;

newNode->next NULL;
if (head == NULL) {
head = newNode;
temp = newNode;
} else {
temp->next = newNode;
temp = newNode;
}
}
printf ("Linked List: ");
temp = head;
while (temp != NULL) ({

printf ("%d -> ", temp->data);
temp = temp->next;

}

printf ("NULL\n");

return 0O;

Q2. Write a C program to insert a node at the beginning of singly linked list.

#include <stdio.h>
#include <stdlib.h>

struct Node ({

int data;

struct Node* next;
}s

void display(struct Node* head) {
struct Node* temp = head;
while (temp != NULL) ({
printf ("%d -> ", temp->data);
temp = temp->next;
}
printf ("NULL\n") ;

int main() {
struct Node *head = NULL, *newNode;
int val;

newNode = (struct Node*)malloc (sizeof (struct Node)) ;
newNode->data = 10;

newNode->next = NULL;

head = newNode;

newNode = (struct Node*)malloc (sizeof (struct Node));
newNode->data = 20;

newNode->next = head;

head = newNode;

printf ("Linked List after insertion: ");

display (head) ;
return 0;

Q3. Write a C program to delete a node from singly linked list.

#include <stdio.h>
#include <stdlib.h>

struct Node ({

int data;

struct Node* next;
}s

void display(struct Node* head) {
struct Node* temp = head;
while (temp != NULL) ({
printf("%d -> ", temp->data);
temp = temp->next;
}
printf ("NULL\n") ;

int main() {
struct Node *head, *temp, *prev;
struct Node *nl, *n2, *n3;

// Creating 3 nodes

nl = (struct Node*)malloc(sizeof (struct Node));
n2 = (struct Node*)malloc(sizeof (struct Node));
n3 = (struct Node*)malloc(sizeof (struct Node));

nl->data = 10; n2->data = 20; n3->data = 30;
nl->next = n2; n2->next = n3; n3->next = NULL;
head = nl;

int key = 20;

temp = head; prev = NULL;

while (temp != NULL && temp->data != key) {
prev = temp;
temp = temp->next;

}

if (temp == NULL) {
printf ("Element not found\n");

} else {

if (prev == NULL)
head = temp->next;
else
prev->next = temp->next;

free (temp) ;

}

printf ("Linked List after deletion: ");
display (head) ;
return O0;

Q4. Write a C program to implement a doubly linked list.

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* prev;
struct Node* next;
}i

void display(struct Node* head) {
struct Node* temp = head;
while (temp != NULL) {
printf ("%d <-> ", temp->data);
temp = temp->next;
}
printf ("NULL\n") ;

int main() {
struct Node *head, *nl, *n2, *n3;
nl = (struct Node*)malloc(sizeof (struct Node)):;
n2 = (struct Node*)malloc(sizeof (struct Node)):;
n3 = (struct Node*)malloc(sizeof (struct Node)):;

nl->data = 10; n2->data = 20; n3->data = 30;
nl->prev = NULL; nl->next = n2;

n2->prev = nl; n2->next = n3;

n3->prev = n2; n3->next = NULL;

head = nl;
printf ("Doubly Linked List: ");

display (head) ;
return 0;

Unit 4 — Stack & Queue

4.1 Introduction

In linear data structures, Stack and Queue are two fundamental abstract data types
(ADTs).

4.2 Stack

Definition:
A stack is a linear data structure that follows the LIFO (Last In First Out) principle.

e Insertion — Push

e Deletion — Pop
e Top element — Peek

& Diagram of Stack (LIFO):

~ Top
40
30
20
10 ~ Bottom

Operations on Stack

Push(x): Insert an element.

Pop(): Remove the top element.

Peek(): Get the top element without removing.

isEmpty(): Check if stack is empty.

isFull(): Check if stack is full (in case of array implementation).

M

Applications of Stack

o Expression evaluation (Postfix, Prefix).
e Function calls (recursion).

e Undo/Redo operations in editors.
o Backtracking algorithms.

4.3 Queue

Definition:
A queue is a linear data structure that follows the FIFO (First In First Out) principle.

e Insertion — Enqueue (at rear)
e Deletion — Dequeue (from front)

& Diagram of Queue (FIFO):

Front —» [10][20][30][40] « Rear

Types of Queue

Simple Queue — Normal FIFO.

Circular Queue — Rear connects back to front when space is available.
Double Ended Queue (Deque) — Insert/Delete from both ends.
Priority Queue — Elements are dequeued based on priority.

el e

Applications of Queue

Scheduling (CPU scheduling, job scheduling).
Printer task management.

Networking (data packets).

Call center systems.

4.4 Unit 4 Theory Questions

Q1. Define stack. Explain its applications.
Ans: Stack is LIFO-based. Applications: recursion, backtracking, undo-redo, expression
evaluation.

Q2. Differentiate between stack and queue.

e Stack — LIFO, insertion/deletion at one end.
e Queue — FIFO, insertion at rear & deletion at front.

Q3. What is a circular queue? Why is it better than a simple queue?
Ans: In circular queue, memory is reused by connecting rear to front. Prevents memory
wastage.

Q4. Explain priority queue with an example.
Ans: In priority queue, higher priority elements are dequeued first (e.g., hospital
emergency ward).

4.5 Unit 4 PYQs (Programming in C)

Q1. Write a C program to implement stack using array.

#include <stdio.h>
#define MAX 5

int stack[MAX], top = -1;

void push (int val) {

if (top == MAX - 1)

printf ("Stack Overflow\n");
else {

topt++;

stack[top] = val;

printf ("%d pushed to stack\n", val);

}

void pop () |

if (top == -1)
printf ("Stack Underflow\n");
else
printf ("%d popped from stack\n", stack[top--1);

}

void display () {
if(top == -1)
printf ("Stack is empty\n");
else {
printf ("Stack elements: ");
for(int 1 = top; 1 >= 0; i--)
printf ("$d ", stack[i]);
printf ("\n");

int main

pop () ;
display();
return 0;

Q2. Write a C program to implement queue using array.

#include <stdio.h>
#define MAX 5

int queue[MAX], front = -1, rear = -1;

void enqueue (int wval) {

if (rear == MAX - 1)
printf ("Queue Overflow\n");
else {
if (front == -1) front = 0;
queue [t+trear] = val;

printf ("%d enqueued\n", val);

}

void dequeue () {
if (front == -1 || front > rear)
printf ("Queue Underflow\n");
else
printf ("%d dequeued\n", queuel[front++]);
}

void display () {

if (front == -1 || front > rear)
printf ("Queue is empty\n");

else {
printf ("Queue elements: ");
for(int 1 = front; i <= rear; i++)

printf ("$d ", queueli]);
printf ("\n");

int main ()
enqueue
enqueue
enqueue

{

(10)

(

(
display(

(

(

0

0):;
0);
0);

’

’

dequeue
display
return

’

1
2
3
)
)
)

Q3. Write a C program to implement circular queue.

#include <stdio.h>

#define MAX 5
int Cq[MAX], front = -1, rear = -1;

void enqueue (int val) {

if((front == 0 && rear == MAX - 1) || (rear + 1)
printf ("Circular Queue Overflow\n");
else {
if (front == -1) front = 0;
rear = (rear + 1) % MAX;
cglrear] = val;

printf ("%d enqueued\n", wval);
}

void dequeue () {

if (front == -1)
printf ("Circular Queue Underflow\n");
else {
printf ("%$d dequeued\n", cqgl[front]);
if (front == rear)
front = rear = -1;
else
front = (front + 1) % MAX;
}
}
void display () {
if (front == -1)
printf ("Circular Queue is empty\n");
else {
printf ("Circular Queue elements: ");
int i = front;
while (1) {
printf("%d ", cqglil);
if (i == rear) break;
i=(i+1) % X;

}
printf ("\n");

}

int main ()
enqueue
enqueue
enqueue

{

(10)

(

(
display(

(

(

0

0):;
0);
0);

’

’

dequeue
display
return

’

1
2
3
)
)
)

Q4. Write a C program to implement stack using linked list.

#include <stdio.h>

Q

°

MAX

front)

#include <stdlib.h>

struct Node {
int data;
struct Node* next;

}i
struct Node* top = NULL;

void push (int wval) {
struct Node* newNode = (struct Node*)malloc(sizeof (struct Node)):;
newNode->data = val;
newNode->next = top;
top = newNode;
printf ("%d pushed\n", val);
}

void pop () {

if (top == NULL)
printf ("Stack Underflow\n");

else {
struct Node* temp = top;
printf ("%d popped\n", temp->data);
top = top->next;
free (temp) ;

}

void display () {
struct Node* temp = top;

if (temp == NULL)
printf ("Stack is empty\n");
else {
printf ("Stack elements: ");
while (temp != NULL) {

printf ("%d ", temp->data);
temp = temp->next;

}

printf ("\n");

int main

pop () ;
display();
return 0;

Unit 5 — Tree & Graph

5.1 Introduction

After linear data structures (array, stack, queue, linked list), we study non-linear data
structures.

e Tree — Hierarchical structure.
e Graph — Network structure.

5.2 Tree

Definition:
A tree is a non-linear data structure that represents hierarchical relationships between
elements (nodes).

e Root — Top-most node.

o Edge — Link between nodes.

e Parent — Node having children.

e Child — Node derived from parent.
e Leaf — Node with no children.

5® Diagram of Binary Tree:

10) Root

(
/
(20) (30)
\
(

Types of Trees

Binary Tree — Each node has max 2 children.

Full Binary Tree — Every node has 0 or 2 children.

Complete Binary Tree — All levels full, last level filled left to right.
Binary Search Tree (BST) — Left child < root < right child.

AVL Tree — Self-balancing BST.

A bl S

Tree Traversals

1. Inorder (LNR): Left — Node — Right
2. Preorder (NLR): Node — Left — Right
3. Postorder (LRN): Left — Right — Node

s& Example (Binary Tree Traversal):

1
/N
2 3
/N
4 5

Inorder: 42513
Preorder: 12453
Postorder: 45231

Applications of Trees

o Database indexing (B-tree, B+ tree).
o File system hierarchy.
e Expression parsing.
e Searching and sorting.
5.3 Graph
Definition:

A graph is a set of vertices (nodes) and edges (links) connecting them.

s® Diagram of Graph:

(B) ----- (B)
I\ |
| \ |
(C) ===-= (D)
Types of Graphs
1. Undirected Graph — Edges have no direction.
2. Directed Graph (Digraph) — Edges have direction.
3. Weighted Graph — Each edge has a weight (cost).
4. Connected Graph — Path exists between all nodes.

5. Cyclic Graph — Graph containing cycles.

Graph Representations

1. Adjacency Matrix: 2D array (n x n).
2. Adjacency List: Linked list of neighbors.

Graph Traversals

1. Depth First Search (DFS): Go deep along a branch before backtracking.
2. Breadth First Search (BFS): Visit level by level using a queue.

Applications of Graphs

e Social networks (friendship connections).
e Google Maps (shortest path algorithms).
e Network routing.

e Scheduling and dependency resolution.

5.4 Unit 5 Theory Questions

Q1. Define binary tree. Explain its applications.
Ans: Binary tree — hierarchical DS with max 2 children. Applications: searching,
expression trees, memory management.

Q2. Differentiate between tree and graph.

e Tree — Hierarchical, no cycles.
e Graph — Network, may contain cycles.

Q3. Explain DFS and BFS.
DFS — stack/recursion, deep search.
BFS — queue, level order traversal.

Q4. Write properties of Binary Search Tree.

e Left <Root < Right.
e Inorder traversal gives sorted order.

5.5 Unit 5 PYQs (Programming in C)

Q1. Write a C program for Binary Tree traversals (Inorder, Preorder, Postorder).

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* left;
struct Node* right;
i

struct Node* createNode (int data) {
struct Node* newNode = (struct Node*)malloc(sizeof (struct Node));
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;

}

void inorder (struct Node* root) {
if (root != NULL) {
inorder (root->left);
printf ("%d ", root->data);
inorder (root->right);

}

void preorder (struct Node* root) {
if (root != NULL) {
printf ("%d ", root->data);
preorder (root->left);
preorder (root->right) ;

}

void postorder (struct Node* root) {
if (root != NULL) {
postorder (root->left);
postorder (root->right) ;
printf ("%d ", root->data);

}

int main() {
struct Node* root = createNode(l);
root->left = createNode (2);
root->right = createNode (3);
root->left->left = createNode (4);
root->left->right = createNode (5);

printf ("Inorder: ");

inorder (root) ;

printf ("\nPreorder: ");
preorder (root) ;

printf ("\nPostorder: ");
postorder (root) ;

return 0;

Q2. Write a C program to implement Binary Search Tree (BST).

#include <stdio.h>
#include <stdlib.h>

struct Node {
int data;
struct Node* left;
struct Node* right;
}i

struct Node* createNode (int data) {
struct Node* newNode = (struct Node*)malloc(sizeof (struct Node));
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;

}

struct Node* insert (struct Node* root, int data) {
if (root == NULL) return createNode (data);
if (data < root->data)
root->left = insert (root->left, data);
else if (data > root->data)
root->right = insert (root->right, data);
return root;

}

void inorder (struct Node* root) {
if (root != NULL) {
inorder (root->left);
printf("%d ", root->data);
inorder (root->right);

}

int main() {
struct Node* root = NULL;
root = insert(root, 50);

insert (root, 30);
insert (root, 70);
insert (root, 20);
insert (root, 40);
insert (root, 60);
insert (root, 80);

printf ("BST Inorder Traversal: ");
inorder (root) ;

return 0;

Q3. Write a C program to represent a graph using adjacency matrix.

#include <stdio.h>
#define V 4

void printMatrix (int graph[V][V]) {
for (int 1i=0; i<V; i++) {
for (int j=0; J<V; J++)
printf("sd ", graph[i][j]);

printf ("\n");
}
}
int main() {
int graph[V] [V] = {
{0, 1, 1, 0},
{1, 0, 1, 1},
{1, 1, 0, 1},
{0, 1, 1, 0}

}i
printf ("Adjacency Matrix of Graph:\n");

printMatrix (graph) ;
return 0O;

Q4. Write a C program to implement BFS traversal of a graph.

#include <stdio.h>
#define V 5

int queue([V], front = -1, rear = -1;

void enqueue (int wval) {

if (rear == V-1) return;
if (front == -1) front = 0;
queue [++rear] = val;
}
int dequeue() {
if (front == -1 || front > rear) return -1;

return queue[front++];

}

void BFS(int graph[V][V], int start) {

int visited([V] = {0};
enqueue (start) ;
visited[start] = 1;

while (front <= rear) {

int node = dequeue();
printf ("%sd ", node);

for (int 1i=0; 1i<V; i++) {

if (graph[node] [i] == 1 && !visited[i]) {
enqueue (i) ;
visited[i] = 1;
}
}
}
}
int main() {
int graph[V] [V] = {

{0,1,1,0,0},

{110101111}1

{110101110}1

{0,1,1,0,1},

{0,1,0,1,0}
}i

printf ("BFS Traversal: ");
BFS (graph, 0);
return 0;

100 Data Structures PYQs with
Complete C Solutions

All problems include a brief statement, complete C solution (or compact outline for very
advanced topics), and time complexity.

Q1. Reverse an Array
Reverse the elements of an array.
#include <stdio.h>

void reverse(int al[], int n){ for(int i=0;i<n/2;i++){ int t=alil;
alil=al[n-1-i]; al[n-1-i]=t; } }

int main(){ int al[l={1,2,3,4,5},n=5; reverse(a,n); for(int i=0;i<n;i++)
printf("%d ",ali]); return 0; }

Time Complexity: O(n)

Q2. Find Maximum Element

Find max in an array.

#include <stdio.h>
int main(){ int al[]={10,45,23,78,56},n=5,max=al[0]; for(int i=1;i<n;i++)
if(alil>max) max=al[i]; printf("%d",max); return 0; }

Time Complexity: O(n)

Q3. Linear Search

Search key in unsorted array.

#include <stdio.h>

int main(){ int al]l={5,10,15,20},n=4,key=15, found=0; for (int
i=0;i<n;i++) if (al[i]l==key) {found=1;break;} printf (found? "Found":"Not
Found"); return 0; }

Time Complexity: O(n)

Q4. Binary Search

Search key in sorted array.

#include <stdio.h>

int bs(int a[]l,int n,int key){ int 1=0,h=n-1; while (1<=h){ int
m=(1+h)/2; if(a[m]==key) return m; if(a[m]<key) 1l=m+1l; else h=m-1;}
return -1; }

int main(){ int al[]={10,20,30,40,50}; int idx=bs(a,5,30);

printf ("%d",idx); return 0; }

Time Complexity: O(log n)

Q5. Insert Element

Insert value at position (1-indexed).

#include <stdio.h>

int main(){ int afl10]={1,2,3,4,5},n=5,pos=3,val=99; for(int
i=n;i>=pos;i--) alil=ali-1]; alpos-1l]l=val;n++; for(int i=0;i<n;i++)
printf("%d ",alil]); return 0; }

Time Complexity: O(n)

Q6. Delete Element

Delete element at position.

#include <stdio.h>
int main(){ int all]l={1,2,3,4,5},n=5,pos=2; for(int i=pos-1;i<n-1;i++)
alil=ali+l]; n--; for(int i=0;i<n;i++) printf("%d ",al[il); return 0; }

Time Complexity: O(n)

Q7. Bubble Sort

Sort array using Bubble Sort.

#include <stdio.h>

int main(){ int al[l]l={5,1,4,2,8},n=5; for(int i=0;i<n-1;i++) for (int

3=0;j<n-i-1;j++) if(aljl>alj+1l]){int t=aljlsaljl=alj+ll;alj+l]l=t;}
for (int i=0;i<n;i++) printf("%d ",ali]); return 0; }

Time Complexity: O(n”2)

Q8. Selection Sort

Sort array using Selection Sort.

#include <stdio.h>

int main(){ int al[]l={64,25,12,22,11},n=5; for(int i=0;i<n-1;i++){ int
m=1i; for(int Jj=i+1;J<n;j++) if(al[jl<a[m]) m=j; int
t=a[m];alml=al[il;ali]l=t;} for(int i=0;i<n;i++) printf("sd ",ali]):
return 0; }

Time Complexity: O(n”2)

Q9. Insertion Sort
Sort array using Insertion Sort.

#include <stdio.h>

int main(){ int a[]l={12,11,13,5,6},n=5; for(int i=1;i<n;i++){ int
key=a[i],j=1i-1; while(j>=0 && al[jl>key){ alj+ll=aljl; Jj--; }
alj+l]l=key; } for(int i=0;i<n;i++) printf("%d ",alil); return 0; }

Time Complexity: O(n”2)

Q10. Merge Sort

Divide-and-conquer sort.

#include <stdio.h>

void merge (int al],int 1,int m,int r){ int nl=m-1+1,n2=r-m, i=0,j=0,k=1;
int L[nl],R[n2]; for(i=0;i<nl;i++) L[i]l=all+i]; for (j=0;j<n2;Jj++)
R[jl=a[m+1+j]; i=0;j=0; while (i<nl&&j<n2)
alk++]=(L[1]<=R[Jj])?L[i++]:R[J++]; while (i<nl) al[k++]=L[i++];

while (j<n2) alk++]=R[j++]; }

void ms (int al[]l,int 1,int r){ if(l<r){ int m=(l+r)/2; ms(a,l,m);
ms(a,mt+l,r); merge(a,l,m,r);} }

int main(){ int a[]l={12,11,13,5,6,7}; ms(a,0,5); for(int i=0;i<6;i++)
printf("sd ",ali]l); return 0; }

Time Complexity: O(n log n)

Q11. Quick Sort (Lomuto)

In-place quicksort using Lomuto partition.

#include <stdio.h>

int part(int al]l,int 1,int r){ int p=alr],i=1l; for(int j=1;J<r;Jj++)
if(aljl<=p){ int t=a[il;alil=aljl;aljl=t; i++; } int
t=alil];alil=alr]l;alr]=t; return i; }

void gs(int all,int 1,int r){ if(1l<r){ int pi=part(a,l,r); gs(a,l,pi-
1); gs(a,pi+l,r);} }

int main(){ int a[]={10,7,8,9,1,5}; gs(a,0,5); for(int i=0;1i<6;1i++)
printf ("sd ",ali]l); return 0; }

Time Complexity: Average O(n log n), Worst O(n”2)

Q12. Heap Sort

Sort using max-heap.

#include <stdio.h>

void heapify(int al],int n,int i) { int 1=2*%i+1l,r=2*i+2,m=1i;
if(l<n&&a[ll>a[m]) m=1; if(r<né&&al[r]>a[m]) m=r; if(m!=i){ int
t=al[ilsalil=alm];a[m]=t; heapify(a,n,m);} }

void hs(int al],int n){ for(int i=n/2-1;i>=0;i--) heapify(a,n,i);

for (int i=n-1;i>0;i--){ int t=a[0];al[0O]=alil;alil=t; heapify(a,i,0);} }
int main(){ int al]={12,11,13,5,6,7},n=6; hs(a,n); for(int i=0;i<n;i++)
printf("sd ",ali]); return 0; }

Time Complexity: O(n log n)

Q13. Rotate Array by k

Rotate array left by k positions (reversal algorithm).

#include <stdio.h>
void rev(int al[],int 1,int r){ while (l<r){ int t=a[ll;al[ll=alr];alr]=t;

1++; r--; } }

void rotate(int al],int n,int k){ k%=n; rev(a,0,k-1); rev(a,k,n-1);
rev(a,0,n-1); }

int main(){ int all]={1,2,3,4,5,6,7}; rotate(a,77,2); for(int
i=0;1i<7;i++) printf("sd ",al[i]l); return 0; }

Time Complexity: O(n)

Q14. Second Largest Element

Find second largest distinct element.

#include <stdio.h>
int main(){ int a[]={12,35,1,10,34,1},n=06,first=-1e9, second=-1e9;

for (int i=0;i<n;i++){ if(a[i]l>first){ second=first; first=al[i]; } else
if(al[i]!=first && alil>second) second=ali]l; } printf ("%d",second);

return 0; }

Time Complexity: O(n)

Q15. Kadane’s Maximum Subarray Sum

Find max subarray sum.

#include <stdio.h>

int main(){ int all={-2,-3,4,-1,-2,1,5,-3},n=8, max=al[0],cur=a[0];

for (int i=1;i<n;i++){ if (cur<0) cur=al[i]; else cur+=ali]; if (cur>max)
max=cur;} printf ("%d",max); return 0; }

Time Complexity: O(n)

Q16. Two Sum (Sorted) — Two Pointers

Check if two numbers sum to X.

#include <stdio.h>

int main(){ int al[l={1,2,4,4},n=4,%x=8,1=0,r=n-1,0k=0; while (1l<r){ int

s=al[ll+alr]; if(s==x){ok=1;break;} else if (s<x) 1l++; else r--; }
printf (ok?"Yes":"No"); return 0; }

Time Complexity: O(n)

Q17. Matrix Transpose
Transpose an NxN matrix in-place.
#include <stdio.h>

int main(){ int n=3,a[3][3]={{1,2,3},{4,5,06},{7,8,9}}; for(int
i=0;1i<n;i++) for(int j=i+1;j<n;j++){ int t=a(i]l[jl; alilljl=aljllil;

aljllil=t; } for(int i=0;i<n;i++){ for(int Jj=0;]j<n;j++) printf ("%d
",alil[3]1); printf("\n"); } return 0; }

Time Complexity: O(n”2)

Q18. Search in Row/Column Sorted Matrix

Search key in matrix sorted by rows and columns.

#include <stdio.h>

int main(){ int r=3,c=3,al[31[(31={{1,4,7},{2,5,8},{3,6,9}},x=5,1=0, j=c-
1,0k=0; while(i<r && j>=0){ if(ali]l[jl==x){ok=1;break;} else
if(alil[j]l>x) j--; else i++; } printf (ok?"Found":"Not Found"); return
0; 1}

Time Complexity: O(r+c)

Q19. Count Inversions (Merge)
Count pairs (i<j, a[i]>a[j]).

#include <stdio.h>

long long merge (long long all,int 1,int m,int r){ int nl=m-1+1,n2=r-m;
long long L[nl],R[n2]; for(int i=0;i<nl;i++) L[i]l=a[l+i]; for (int
j=0;3j<n2;3++) R[jl=a[m+1+3j]1; int i=0,3=0,k=1; long long inv=0;
while (i<nl && j<n2){ 1f(L[1]<=R[j]) alk++]=L[i++]; else {
alk++]=R[J++]; inv += (nl - 1i); } } while(i<nl) alk++]=L[1i++];
while (j<n2) al[k++]=R[j++]; return inv; }

long long ms(long long al[],int 1,int r){ if(l>=r) return 0; int
m=(l+r)/2; long long inv=0; inv+=ms(a,l,m); inv+=ms (a,m+l,r);
inv+=merge(a,l,m,r); return inv; }

int main(){ long long all={2,4,1,3,5}; printf("%$11d", ms(a,0,4));
return 0; }

Time Complexity: O(n log n)

Q20. Dutch National Flag (0/1/2 Sort)

Sort array of 0s,1s,2s.

#include <stdio.h>

int main(){ int al]={2,0,2,1,1,0},n=6,1=0,m=0,h=n-1; while (m<=h) {
if(a[m]==0){int t=a[ll;all]l=a[m]l;a[m]=t; 1++; mt+;} else if(a[m]l==1)
m++; else {int t=a[m];a[ml=al[h];alh]l=t; h--; } } for(int 1i=0;i<n;i++)
printf ("sd ",ali]l); return 0; }

Time Complexity: O(n)

Q21. Majority Element (Boyer—Moore)

Find element > n/2 if exists.

#include <stdio.h>

int main(){ int all={2,2,1,1,1,2,2},n=7,cand=0,count=0; for (int
i=0;i<n;i++){ if (count==0) {cand=a[i];count=1;} else if (a[i]==cand)
count++; else count--; } // verify

int cnt=0; for(int i=0;i<n;i++) if(a[il==cand) cnt++;

printf (cnt>n/2?2"%d":"No", cand); return 0; }

Time Complexity: O(n)

Q22. Merge Two Sorted Arrays

Merge into a single sorted array.

#include <stdio.h>

int main(){ int afl]={1,3,5},b[1={2,4,6},n=3,m=3,1i=0,3=0; while(i<n &&

j<m) printf("sd ", (alil<=b[j])?ali++]:b[j++]); while(i<n) printf ("%d
",ali++]); while(j<m) printf("%d ",b[Jj++]); return 0; }

Time Complexity: O(n+m)

Q23. Equilibrium Index

Find index where left sum == right sum.

#include <stdio.h>

int main(){ int al[]l={-7,1,5,2,-4,3,0},n=7,total=0,left=0,idx=-1;

for (int i=0;i<n;i++) total+=al[i]; for(int i=0;i<n;i++){ total-=al[i];

if (left==total) {idx=i;break;} left+=ali]l; } printf("%d",idx); return 0;
}

Time Complexity: O(n)

Q24. Pair with Given Sum (Hashing)

Check if any pair sums to X (unsorted).

#include <stdio.h>
#define SIZE 101

int H[SIZE];
int main(){ int all={8,7,2,5,3,1},n=6,x=10; for(int i=0;i<n;i++){ int
need=x-a[i]; 1if(need>=0 && H[need]){ printf ("Yes"); return 0;}

Hla[i]]=1;} printf ("No"); return 0; }

Time Complexity: O(n) average

Q25. Prefix Sum Range Query

Compute sum l.r using prefix sums.

#include <stdio.h>
int main(){ int all]l={1,2,3,4,5},n=5,p[6]={0}; for(int i=1;i<=n;i++)
plil=pli-1]1+ali-1]; int 1=2,r=4; printf("%d", plrl-pl[l-1]1); return 0; }

Time Complexity: O(n) build, O(1) query

Q26. Singly Linked List: Insert at Head

Implement insertion at head.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

void push (Node** head, int x){ Node* n=(Node*)malloc (sizeof (Node)); n-
>data=x; n->next=*head; *head=n; }

void print (Node* h){ while(h){ printf("%$d ",h->data); h=h->next; } }
int main(){ Node* head=NULL; push (&head, 3); push(&head,?2);

push (&head, 1) ; print (head); return 0; }

Time Complexity: 0(1)

Q27. Singly Linked List: Delete by Key

Delete first occurrence of key.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

void del (Node** head, int key){ Node* t=*head, *prev=NULL; while(t && t-
>datal!=key){ prev=t; t=t->next; } if(!t) return; if(!prev) *head=t-
>next; else prev->next=t->next; free(t); }

Time Complexity: O(n)

Q28. Reverse a Singly Linked List

[terative reversal.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

Node* rev (Node* h){ Node* p=NULL; while (h){ Node* n=h->next; h->next=p;
p=h; h=n; } return p; }

Time Complexity: O(n)

Q29. Detect Loop in Linked List (Floyd)

Use tortoise and hare.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

int hasLoop (Node* h){ Node *s=h,*f=h; while(f && f->next){ s=s->next;
f=f->next->next; if(s==f) return 1; } return 0; }

Time Complexity: O(n)

Q30. Intersection of Two Linked Lists
Find merge point by length difference.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

int len (Node* h){ int ¢=0; while (h) {c++;h=h->next;} return c; }

Node* advance (Node* h,int k) { while(k--) h=h->next; return h; }

Node* intersect (Node* a,Node* b){ int la=len(a), lb=len(b); if(la>1lb)
a=advance (a, la-1b); else b=advance (b, 1lb-la); while(a&é&b){ if (a==b)
return a; a=a->next; b=b->next; } return NULL; }

Time Complexity: O(n+m)

Q31. Stack using Array
Implement push, pop, peek.

#include <stdio.h>

#define MAX 100

int st[MAX], top=-1;

void push (int x){ if(top==MAX-1) return; st[++topl=x; }
int pop(){ return (top==-1)7?-1l:stltop--1; }

int peek(){ return (top==-1)7?-1l:stftopl; }

Time Complexity: 0(1)

Q32. Stack using Linked List
Stack ops with list.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

void push (Node** t,int x){ Node* n=(Node*)malloc(sizeof (Node)); n-
>data=x; n->next=*t; *t=n; }

int pop (Node** t){ if(!*t) return -1; Node* tmp=*t; int v=tmp->data;
*t=tmp->next; free(tmp); return v; }

Time Complexity: O(1)

Q33. Balanced Parentheses (Stack)
Check balanced brackets.

#include <stdio.h>

#define MAX 1000

char st[MAX]; int top=-1;

int match (char a,char b){ return
(a=="("&&b==")") || (a=="["6&&b=="]1") || (a=="{"&&b=="}"); }

int isBalanced(char* s){ for(int i=0;s[i];i++){ char c=s[i];

if(c=="("|lc=="["]]lc=="{") st[++topl=c; else { if (top==-

1| |!'match(st[topl,c)) return 0; top--; } } return top==-1; }

int main(){ char s[]1="{[()]}"; printf (isBalanced(s)?"Yes":"No"); return
0; }

Time Complexity: O(n)

Q34. Infix to Postfix (Shunting-Yard)

Convert infix to postfix.

#include <stdio.h>
#include <ctype.h>
#define MAX 1000

char st[MAX]; int top=-1;

int prec(char c){ if(c=='""') return 3; if(c=='*'||c=='/") return 2;
if(c=="+'||c=="-") return 1l; return 0; }
int main(){ char in[]="a+b* (c-d)"; char out[MAX]; int k=0;

for(int 1=0; inf[i]; i++){ char c=in[i];

if (isalnum(c)) out[k++]=c;

else if(c==' (') st[++topl=c;

else if(c==")"){ while(top!=-1 && stltop]!='("') out[k++]=st[top--1;
top--; }

else { while(top!=-1 && prec(stltop]l)>=prec(c)) outl[k++]=st[top--1;
st[++topl=c; } }
while (top!=-1) out[k++]=st[top--]; out[k]="'\0'; printf("$s",out);
return 0; }

Time Complexity: O(n)

Q35. Evaluate Postfix

Evaluate postfix expression with stack.

#include <stdio.h>

#include <ctype.h>

#define MAX 1000

int st[MAX], top=-1;

int main(){ char p[]="23*54*+9-"; for(int i=0;p[i];i++){ char c=p[i];
if(isdigit(c)) st[++topl=c-'0'; else { int b=st[top--]1, a=st[top--];
int r= (c=='+'")?atb:(c=='-")?a-b: (c=="*"')?a*b:a/b; st[++topl=r; } }
printf ("%d", stltopl); return 0; }

Time Complexity: O(n)

Q36. Queue using Array (Circular)

Implement circular queue.

#include <stdio.h>

#define MAX 5

int g[MAX], front=0, rear=0, cnt=0;

void eng(int x){ if (cnt==MAX) return; glrear]=x; rear=(rear+l)SMAX;
cnt++; }

int deqg(){ if(cnt==0) return -1; int v=qgl[front]; front=(front+l) %MAX;
cnt--; return v; }

Time Complexity: O(1)

Q37. Queue using Linked List

Enqueue/Dequeue with list.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int data; struct Node* next; } Node;

typedef struct{ Node *f,*r; } Q;

void eng(Q* g,int x){ Node* n=(Node*)malloc (sizeof (Node)); n->data=x;n-
>next=NULL; if(!g->r) g->f=g->r=n; else {g->r->next=n; g->r=n;} }

int deg(Q* g){ if(!g->f) return -1; Node* t=g->f; int v=t->data; g-
>f=t->next; if(!gq->f) g->r=NULL; free(t); return v; }

Time Complexity: O(1)

Q38. Deque (Array)

Double-ended queue operations.

#include <stdio.h>

#define MAX 10

int dg[MAX], f=-1,r=-1;

int isFull () { return (f==0 && r==MAX-1) || (f==r+l1); }
int isEmpty(){ return f==-1; }

void insertFront (int x){ if(isFull()) return; if (f==-1){ f=r=0; } else

if (£f==0) f=MAX-1; else f--; dglfl=x; }

void insertRear (int x){ if (isFull()) return; 1f(f==-1){ f=r=0; } else
if (r==MAX-1) r=0; else r++; dglrl=x; }

int deleteFront(){ if (isEmpty()) return -1; int v=dql[f]; if (f==r) f=r=-
1; else if (f==MAX-1) f=0; else f++; return v; }

int deleteRear(){ if(isEmpty()) return -1; int v=dglr]; if (f==r) f=r=-
1; else if(r==0) r=MAX-1; else r--; return v; }

Time Complexity: O(1)

Q39. Priority Queue (Max-Heap)
Insert and extract-max.
#include <stdio.h>

#define MAX 100
int h[MAX],sz=0;

void insert (int x){ int i=sz++; h[i]l=x; while (i>0 && h[(i-1)/2]1<h[i]) {
int t=h[i];h[i]=h) /2] 1)/2]=t; i=(i-1)/2; } }
int extract () { int r—h[O], [] h[--sz]; int i=0; while (1) { int
1=2%i+1,rn=2*i+2,m=1; 1if (1<sz&&h[1l]>h]

]=h

m]) m=1; if (rn<sz&&h[rn]>h[m])
[[

m=rn; if(m==i) break; int t=h[i];h[i m];h[m]=t; i=m; } return r; }

Time Complexity: Insert/Delete O(log n)

Q40. Next Greater Element (Stack)

Find next greater element for each item.

#include <stdio.h>
#define MAX 100
int st[MAX], top=-1;

int main(){ int al[l={4,5,2,25},n=4,ans[4]; for(int i=0;i<n;i++) {
while (top!=-1 && al[st[top]ll<alil){ ans[st[to]] =al[i]; top--; }
st[++topl=i; } while(top!=-1){ ans(s [opll= top--; } for(int
i=0;1i<n;i++) printf("%d -> %d\n",alil], s[l]); return 0; }

Time Complexity: O(n)

Q41. LRU Cache (Array + Counters, simple)
Simulate LRU page replacement (simplified).

#include <stdio.h>

#define F 3

int framel[F]={-1,-1,-1}, age[F]={0};

int main(){ int ref(]={7,0,1,2,0,3,0,4,2,3,0,3},n=12,hit=0,miss=0;
for (int t=0;t<n;t++){ int p=ref[t],pos=-1; for(int i=0;i<F;i++) {

age[i]++; if (frame[i]==p) {pos=i;break;} } if(pos!=-1){ hit++;
age[pos]=0; } else { miss++; int repl=0; for(int i=1;i<F;i++)
if(agel[il>age(repl]) repl=i; framel[repll=p; agelrepl]=0; } }
printf ("Hits=%d Miss=%d",hit,miss); return 0; }

Time Complexity: O(n*F)

Q42. Binary Search Tree: Insert & Inorder

Create BST and inorder traverse.

#include <stdio.h>

#include <stdlib.h>

typedef struct Node{ int key; struct Node *1,*r; } Node;

Node* new (int k) { Node* n=(Node*)malloc (sizeof (Node)); n->key=k;n->1=n-
>r=NULL; return n; }

Node* ins (Node* r,int k){ if(!r) return new(k); if(k<r->key) r-
>1=ins (r->1,k); else if(k>r->key) r->r=ins(r->r,k); return r; }

void inorder (Node* r){ if('r) return; inorder (r->1); printf("%d ",r-
>key); inorder (r->r); }

int main() { Node* r=NULL; int al[]={50,30,20,40,70,60,80}; for (int
i=0;1i<7;i++) r=ins(r,al[i]); inorder(r); return 0; }

Time Complexity: Insert O(h)

Q43. BST Search & Delete
Delete a node in BST.
#include <stdio.h>

#include <stdlib.h>
typedef struct Node{ int key; struct Node *1,*r; } Node;

Node* new (int k) { Node* n=(Node*)malloc (sizeof (Node)); n->key=k;n->1=n-
>r=NULL; return n; }

Node* ins (Node* r,int k) { if('r) return new(k); if(k<r->key) r-

>1=ins (r->1,k); else if(k>r->key) r->r=ins(r->r,k); return r; }

Node* minNode (Node* r){ while(r->1) r=r->1; return r; }

Node* del (Node* r,int k){ if('r) return r; if (k<r->key) r->1=del (r-
>1,k); else if(k>r->key) r->r=del (r->r,k); else { if(!r->1){ Node* t=r-
>r; free(r); return t;} else if(!r->r){ Node* t=r->1; free(r); return
t;} Node* t=minNode (r->r); r->key=t->key; r->r=del (r->r,t->key);}
return r; }

Time Complexity: O(h)

Q44. Tree Traversals (Recursive)

Preorder, Inorder, Postorder.

#include <stdio.h>

typedef struct Node{ int d; struct Node *1,*r; } Node;

void pre (Node* r){ if('r) return; printf("%d ",r->d); pre(r->1); pre(r-
>r);)

void in (Node* r){ if('r) return; in(r->1); printf("%d ",r->d); in(r-
>r); }

void post (Node* r){ if(!'r) return; post(r->1); post(r->r); printf("%d
",r->d); }

Time Complexity: O(n)

Q45. Height of Binary Tree

Compute height (levels).

#include <stdio.h>

typedef struct Node{ int d; struct Node *1,*r; } Node;

int h(Node* r){ if(!r) return -1; int lh=h(r->1), rh=h(r->r); return
(lh>rh?lh:rh)+1; }

Time Complexity: O(n)

Q46. Check Balanced Binary Tree
Height-balanced check.

#include <stdio.h>

typedef struct Node{ int d; struct Node *1,*r; } Node;

int bal (Node* r){ if(!'r) return 0; int lh=bal (r->1); if(lh==-1) return
-1; int rh=bal(r->r); if(rh==-1) return -1; if(lh-rh>1||rh-1h>1) return
-1; return (lh>rh?lh:rh)+1; }

Time Complexity: O(n)

Q47. Lowest Common Ancestor (BST)
Find LCA in BST.

#include <stdio.h>

typedef struct Node{ int k; struct Node *1,*r; } Node;

Node* lca (Node* r,int a,int b){ while(r){ if(a<r->k && b<r->k) r=r->1;
else if (a>r->k && b>r->k) r=r->r; else return r; } return NULL; }

Time Complexity: O(h)

Q48. AVL Tree Insertion
Self-balancing BST (rotations).

#include <stdio.h>

#include <stdlib.h>

typedef struct N{ int k,h; struct N *1,*r; } N;

int H(N* n){ return n?n->h:0; }

int max(int a,int b){ return a>b?a:b; }

N* newN (int k) { N* n=(N*)malloc(sizeof (N)); n->k=k;n->1=n->r=NULL;n-
>h=1; return n; }

N* rrot (N* y){ N* x=y->1; N* T=x->r; x->r=y; y->1=T; y->h=max (H(y-
>1),H(y->r))+1; x->h=max (H(x->1),H(x->r))+1; return x; }

N* lrot (N* x){ N* y=x->r; N* T=y->1; y->1=x; x->r=T; x->h=max (H(x-
>1),H(x->r))+1; y->h=max(H(y->1),H(y->r))+1; return y; }

int balF(N* n){ return n?H(n->1)-H(n->r):0; }

N* ins (N* n,int k){ if(!n) return newN(k); if (k<n->k) n->l=ins(n->1,k);
else if (k>n->k) n->r=ins (n->r,k); else return n; n->h=l+max (H (n-
>1) ,H(n->r)); int b=balF(n); if (b>1 && k<n->1->k) return rrot(n);
if (b<-1 && k>n->r->k) return lrot(n); if(b>1 && k>n->1->k){ n-
>l=lrot (n->1); return rrot(n);} 1f(b<-1 && k<n->r->k){ n->r=rrot (n->r);
return lrot(n);} return n; }

Time Complexity: O(log n)

Q49. Binary Heap (Min-Heap)

Insert and extract-min.

#include <stdio.h>

#define MAX 100

int h[MAX],sz=0;

void up(int 1) { while(i>0 && h[(i-1)/2]1>h[i]){ int t=h[i];h[i]l=h[(i-
1)/21;h[(i-1)/2]1=t; i=(i-1)/2; } }

void down (int i) { while (1) { int 1=2*i+1,r=2*i+2,m=1i;

1=
)
h{
]

if(1<sz&&h[l]l<h[m]) m=1; if(r<sz&&h[r]<h[m]) m=r; if (m==i) break; int
t=hli];h[i]l=h[m];h[m]=t; i=m; } }
void insert(int x){ h[sz]l=x; up(sz++); }

int extract(){ int r=h([0]; h[0]=h[--sz]; down(0); return r; }

Time Complexity: Insert/Delete O(log n)

Q50. Trie Insert & Search (lowercase)
Prefix tree for strings.

#include <stdio.h>

#include <stdlib.h>

#define A 26

typedef struct T{ struct T* c[A]; int end; } T;

T* newT () { T* n=(T*)malloc(sizeof (T)); n->end=0; for (int 1=0;1i<A;i++)
n->c[1]=NULL; return n; }

void insert (T* r, const char* s){ for(int i=0;s[i];i++){ int idx=s[i]-

'a'; if(!r->c[idx]) r->c[idx]=newT(); r=r->c[idx]; } r->end=1; }
int search(T* r, const char* s){ for(int i=0;s[i];i++){ int idx=s[i]-
'a'; 1if('r->c[idx]) return 0; r=r->c[idx]; } return r->end; }

Time Complexity: Insert/Search O(m)

Q51. Huffman Coding (Outline)

Build optimal prefix codes using min-heap (outline).

// Outline: create nodes with freq, build min-heap, repeatedly extract
two min, merge, insert back.

// Due to length, full implementation is omitted here; see Set 6/74 for
notes.

int main() { return 0; }

Time Complexity: O(n log n) to build

Q52. Graph BFS (Adjacency List)

Breadth-first search from source.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int vis[MAX];

void addE (int u,int v) { Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[u]; adjl[ul=n; }

void bfs(int s){ int g[MAX], f=0,r=0; vis[s]=1l; glr++]=s; while (f<r) {
int u=q[f++]; printf("%d ",u); for (Node* p=adjlul];p;p=p->next)
if(!vis[p->v]){ visl[p->v]=1l; qglr++]l=p->v; } } }

Time Complexity: O(V+E)

Q53. Graph DFS (Recursive)

Depth-first traversal.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int vis[MAX];

void addE (int u,int v){ Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[ul; adjlul=n; }

void dfs(int u){ vis[ul=1l; printf("%d ",u); for (Node* p=adjlul;p;p=p-
>next) if (!vis[p->v]) dfs(p->v); }

Time Complexity: O(V+E)

Q54. Topological Sort (Kahn)
Topo order for DAG.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int indeg[MAX];

void addE (int u, int v) { Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[ul; adjlul=n; indeg[v]++; }

void topo (int V) { int g[MAX],f=0,r=0, cnt=0; for (int i=0;i<V;i++)

if(indeg[i]==0) qglr++]=i; while (f<r){ int u=gq[f++]; printf("%d ",u);
cnt++; for (Node* p=adjlu];p;p=p->next){ if (--indeg[p->v]==0) glr++]=p-
>v; } } 1f(cnt!=V) printf (" (cycle)"); }

Time Complexity: O(V+E)

Q55. Dijkstra (Adjacency Matrix)

Shortest paths from source with non-negative weights.

#include <stdio.h>

#define V 9

#define INF 1e9

int minDist(int dist[], int spt[]){ int m=INF, idx=-1; for (int
v=0;v<V;v++) 1f(!spt[v] && dist[v]<=m){ m=dist([v]; idx=v; } return idx;
}

void dijkstra(int g[V][V], int src){ int dist[V],spt[V]={0}; for (int
1=0;1<V;i++) dist[i]=INF; dist[src]=0; for(int c=0;c<V-1;c++){ int
u=minDist (dist,spt); sptlul=1l; for(int v=0;v<V;v++) 1if(!sptlv] &&

glul [v] && dist[ul+gl[u][v]<dist[v]) dist([v]=distlul+glul(lv]; } for(int
i=0;i<V;i++) printf("%d ",dist[i]); }

Time Complexity: O(V"2)

Q56. Kruskal’s MST (Union-Find)

Minimum spanning tree.

#include <stdio.h>

#include <stdlib.h>

struct Edge{ int u,v,w; };

int comp(const void* a,const void* b){ return ((struct Edge*)a)->w -
((struct Edge*)b)->w; }

int parent[100],rnk[100];

int find(int x){ return parent[x]==x?x: (parent[x]=find(parent[x])); }

void unite(int a,int b){ a=find(a); b=find(b); if(a!=b) {

if (rnk[al<rnk[b]) parent[al=b; else if(rnk[bl<rnk[a]) parent[bl=a; else
{ parent[b]l=a; rnkl[al++; } } }

int main () { struct Edge
el(]={{0,1,10},{0,2,6},{0,3,5},{1,3,15},{2,3,4}}; int E=5,V=4,w=0;

for (int i=0;i<V;i++) {parent[i]l=i;rnk[1i]=0;} gsort(e,E,sizeof (struct
Edge) ,comp); for(int i=0, cnt=0; 1i<E && cnt<V-1; i++) {

if(find(e[i].u) !=find(e[i].v)){ unite(e[i].u,e[i].v); wt=e[i].w; cnt++;
}} printf ("MST=%d",w); return 0; }

Time Complexity: O(E log E)

Q57. Prim’s MST (Adjacency Matrix)

Minimum spanning tree using Prim.

#include <stdio.h>
#define V 5
#define INF 1e9

], int mst[]){ int m=INF,idx=-1; for (int
v=0;v<V;v++) if(!mst[v] && key[v]<m){ m=key[v]; idx=v; } return idx; }
void prim(int g[V][V]){ int key[V],mst[V]={0},parent[V]; for(int
i=0;i<V;i++){ key[1]=INF; parent[i]=-1; } key[0]=0; for(int c=0;c<V-
1;c++){ int u=minKey(key,mst); mstlul=1l; for(int v=0;v<V;v++)

int minKey (int key/[

if(glul [v] && !mstlv] && glullvl<key[v]){ parent[v]=u; key[v]=glu][v];
}} int sum=0; for(int i=1;i<V;i++) sum+=g[i] [parent[i]];
printf ("MST=%d",sum); }

Time Complexity: O(V"2)

Q58. Detect Cycle in Undirected Graph (DSU)

Cycle detection using Union-Find.

#include <stdio.h>

struct Edge{ int u,v; };

int parent[100];

int find(int x){ return parent[x]==x?x: (parent[x]=find(parent[x])); }
int unite (int a,int b){ a=find(a); b=find(b); if (a==b) return 1;

parent [b]l=a; return 0; }

int main(){ struct Edge e[]={{0,1},{1,2},{2,0}}; int V=3,E=3; for(int
i=0;1i<V;i++) parent[i]l=i; for(int i1=0;i<E;i++) if (unite(el[i].u,el[i].V))
{ printf ("Cycle"); return 0;} printf("No Cycle"); return 0; }

Time Complexity: O(E a(V))

Q59. Topological Sort (DFS)
Topo order using DFS stack.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int vis[MAX], st[MAX], top=-1;

void addE (int u,int v){ Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[ul; adjlul=n; }

void dfs(int u){ vis[ul=1l; for (Node* p=adjlul;p;p=p->next) if(!vis|[p-
>v]) dfs(p->v); st[++topl=u; }

Time Complexity: O(V+E)

Q60. Graph Connected Components (DFS)

Count components.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int vis[MAX];

void addE (int u, int v) { Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[ul; adjlul=n; }

void dfs(int u){ vis[ul=1l; for (Node* p=adjlul;p;p=p->next) if(!vis|[p-
>v]) dfs(p->v); }

int main(){ int V=5,comp=0; addkE(0,1); addE(1,0); addE(2,3); addE(3,2);
for (int i=0;i<V;i++) if(!vis[i]){ comp++; dfs(i);} printf ("%d",comp);
return 0; }

Time Complexity: O(V+E)

Q61. Shortest Path in Unweighted Graph (BFS)

Compute distances.

#include <stdio.h>

#include <stdlib.h>

#define MAX 100

typedef struct Node{ int v; struct Node* next; } Node;

Node* adj[MAX]; int dist[MAX];

void addE (int u,int v) { Node* n=(Node*)malloc (sizeof (Node)); n->v=v; n-
>next=adj[u]; adjl[ul=n; }

void sp(int s,int V){ int g[MAX], f=0,r=0,vis[MAX]={0}; for (int
i=0;1i<V;i++) dist[i]=-1; vis[s]=1; dist[s]=0; glr++]=s; while (f<r){ int
u=q[f++]; for (Node* p=adjlu];p;p=p->next) if(!vis[p->v]){ vis[p->v]=1;
dist[p->v]=dist[ul+l; glr++]l=p->v; } } }

Time Complexity: O(V+E)

Q62. Hashing with Linear Probing
Open addressing hash table.

#include <stdio.h>
#define S 10

int H[S];

void insert(int k) { int i=k%S; while (H[i]!=0) i=(i+1)%S; H[i]=k; }

int search(int k){ int 1i=k%S,s=i; while (H[i]!=k){ 1f(H[i]==0) return -
1; i=(i+1)%S; if(i==s) return -1;} return i; }

int main(){ insert(12); insert (22); insert(32); printf ("%d",

search (22)); return 0; }

Time Complexity: Avg 0(1)

Q63. Hashing with Quadratic Probing

Resolve collisions quadratically.

#include <stdio.h>

#define S 10

int H[S];

void insert (int k) { int 1i=k%S,c=0; while (H[(i+c*c)%S]!=0) c++;
H[(i+c*c)%$S]=k; }

Time Complexity: Avg 0(1)

Q64. Separate Chaining Hashing

Buckets as linked lists.

#include <stdio.h>

#include <stdlib.h>

#define S 10

typedef struct Node{ int d; struct Node* next; } Node;

Node* HT[S];
int h(int k) { return k%S; }
void insert (int k) { int i=h(k); Node* n=(Node*)malloc (sizeof (Node)); n-

>d=k; n->next=HT[i]; HT[i]=n; }

Time Complexity: Avg 0(1)

Q65. Counting Sort

Stable counting sort for small range.

#include <stdio.h>
void cs(int a[],int n,int m){ int c[m+1l]; for(int i=0;i<=m;i++) c[i]=0;
for (int i=0;i<n;i++) clal[i]l]++; for(int i=1l;i<=m;i++) c[i]+=c[i-1]; int

out [n]; for(int i=n-1;i>=0;i--) out[--clal[illl=alil]l; for(int
i=0;i<n;i++) al[i]l=out[i]; }

Time Complexity: O(n+k)

Q66. Radix Sort (LSD)

Digits by counting sort.

#include <stdio.h>

int getMax (int al],int n){ int m=a[0]; for(int i=l;i<n;i++) if(ali]l>m)
m=a[i]; return m; }

void cexp(int a[l,int n,int e){ int out[n], c[10]1={0}; for (int
i=0;i<n;i++) cl[(a[i1]1/e)%10]++; for(int i=1;i<10;i++) c[i]+=c[i-1];

for (int i=n-1;i>=0;i--){ int d=(a[i]/e)%10; out[--c[d]]l=a[i]; } for(int

i=0;i<n;i++) al[i]l=out[i]; }
void radix (int al[],int n){ int m=getMax(a,n); for(int e=1;m/e>0;e*=10)
cexp(a,n,e); }

Time Complexity: O(nk)

Q67. Bloom Filter (Toy)

Probabilistic set membership.

#include <stdio.h>

#define S 50

int B[S];

int hl (char*s){ int h=0; while (*s)

h=(h+*s++) %S; return h; }
int h2(char*s){ int h=1; while(*s) h
S
&

h* (*s++))%S; return h; }
void insert (char*s){ B[hl(s)]1=B[h2(
int query(char*s){ return B[hl(s)]&

(
(
]
[
Time Complexity: Insert/Query O(k)

Q68. Disjoint Set (Union-Find)

Path compression + union by rank.

#include <stdio.h>

int p[100], r[100];

void make (int n){ for (int i=0;i<n;i++) {plil=1i;r[i]1=0;
int find(int x){ return p[x]==x?x:(p[x]=find(p[x])):;
void uni(int a,int b){ a=find(a); b=find(b); if(a==b) return;
if(rlal<r[b]) plal=b; else if(r[bl<rl[al) plbl=a; else { plbl=a; rlal++;
bl

b}
}

Time Complexity: a(n)

Q69. Floyd—Warshall
All-pairs shortest paths.

#include <stdio.h>

#define INF 99999

#define V 4

void fw(int g[V]I[V]){ int d[V][V]; for(int i=0;i<V;i++) for (int
J=0;3<V;j++) dlil[31=gli]l[]];

for (int k=0;k<V;k++) for(int i=0;i<V;i++) for (int j=0;3<V;j++)
if(d[i] [k1+d[k][31<d[1]1[3]) dAli]l[jl=dli] [kl+d[k]l[J];

for (int i=0;i<V;i++){ for(int j=0;j<V;j++) printf (d[i] [j]==INF?"INF
"i"sd ",dl11[3]1); printf("\n"); } }

)
]

Time Complexity: O(V"3)

Q70. Bellman—Ford

Single-source shortest path with negatives.

#include <stdio.h>

#include <limits.h>

struct E{int u,v,w;};

void bf (struct E e[],int V,int E,int s){ int d[V]; for(int i=0;1i<V;i++)
d[1i]=INT MAX; d[s]=0;

for (int i=1;i<=V-1;i++) for (int j=0;J<E;j++) if(d[e[J].u]!=INT MAX &&
dle[j].ul+el[j]l.w<dle[]j].v]) dlelj].v]=d[el[]].ul+e[]j].w;

for (int j=0;j<E;j++) if(dl[e[]].u]!=INT MAX &&
dle[j].ul+el[j].w<d[e[]j].v]){ printf("Neg cycle"); return; }

for (int i=0;i<V;i++) printf("sd ",d[i]); }

Time Complexity: O(VE)

Q71. Ford—Fulkerson (Edmonds—Karp BFS)

Max flow in network.

#include <stdio.h>

#include <string.h>

#include <limits.h>

#define V 6

int bfs(int r[V][V],int s,int t,int p[]){ int
gl[l100],£f=0,rn=0,vis[V]={0}; glrn++]l=s; vis[s]=1l; pls]l=-1;

while (f<rn){ int u=q[f++]; for (int v=0;v<V;v++) if(!vis[v]&&r[u] [v]>0) {
glrn++]=v; plv]=u; vis[v]=1l; } } return vis[t]; }

int maxflow(int g[V][V],int s,int t){ int r[V][V]; for(int 1=0;i<V;i++)
for (int j=0;3<V;Jj++) rl[il[jl=glil[j]; int pIlV], flow=0;

while (bfs(r,s,t,p)){ int pf=INT MAX; for(int v=t;v!=s;v=p[v]){ int
u=plv]; if(r[u] [vl<pf) pf=r[u]llv]; } for(int v=t;v!=s;v=p([v]){ int
u=p[v]; rlul] [v]l-=pf; r[v][u]l+=pf; } flowt=pf; } return flow; }

Time Complexity: O(VE”2) for EK

Q72. Fibonacci (DP)
Bottom-up DP for nth Fibonacci.

#include <stdio.h>
int main(){ int n=10, f[n+2]; £[0]=0; f[1]=1; for(int i=2;i<=n;i++)
fli]=£f[i-1]+£f[i-2]; printf("%d",f[n]); return 0; }

Time Complexity: O(n)

Q73. Longest Common Subsequence (DP)
Length of LCS.

#include <stdio.h>
#include <string.h>

int main () { char X[]="AGGTAB", Y[]="GXTXAYB"; int
m=strlen(X),n=strlen(Y), L[m+1l] [n+1];

for (int i=0;i<=m;i++) for (int j=0;j<=n;j++) 1f(i==0][3==0) L[i]1[7]1=0;
else 1if(X[1i-1]1==Y[j-11) L[i][J]1=L[i-11[j-11+1; else LI[i]I[3j1=(L[i-
11031>L041[3-11)?L[i-2]1[J1:L[i1[3-11;

printf ("%d",L[m] [n]); return 0; }

Time Complexity: O(mn)

Q74. Longest Increasing Subsequence (O(n log n))
Patience sorting method.
#include <stdio.h>

int ceilidx(int af[],int t[],int 1,int r,int key){ while(r-1>1){ int
m=1+(r-1)/2; if(al[t[m]]>=key) r=m; else l=m; } return r; }

int LIS (int a[],int n){ int tail[n],idx[n],len=1; tail[0]=0;
idx[0]=al[0];

for (int i=1;i<n;i++){ if(a[i]<idx[0]) idx[0]=al[i]; else
if(alil>idx[len-1]) idx[len++]=a[i]; else idx[ceilidx(idx,tail,-1,len-
1l,af[i])1=alil]l; } return len; }

int main(){ int afl]={10,22,9,33,21,50,41,60}; printf("%d", LIS(a,8));
return 0; }

Time Complexity: O(n log n)

Q75. 0/1 Knapsack (DP)

Max value within capacity.

#include <stdio.h>

int max (int a,int b) {return a>b?a:b;}

int main(){ int v[]={60,100,120}, w[]={10,20,30}, n=3, W=50; int
K[n+1] [W+17];

for (int i=0;i<=n;i++) for (int wt=0; wt<=W; wt++) if (i==0] |wt==0)

K[i] [wt]=0; else if(w[i-1]<=wt) K[i] [wt]l=max(v[i-1]+K[i-1] [wt-w[i-1]7,
Kli-1][wt]); else K[i] [wt]=K[i-1][wt];

printf ("%d",K[n] [W]); return 0; }

Time Complexity: O(nW)

Q76. Matrix Chain Multiplication (DP)

Minimum multiplication cost.

#include <stdio.h>

#define INF 1e9

int min(int a,int b) {return a<b?a:b;}

int main(){ int pl]l={1,2,3,4}, n=4; int m[n][n]; for(int i=1;i<n;i++)
m[i] [1]=0;

for (int L=2; L<n; L++) for(int i=1;i<n-L+1;i++){ int j=i+L-1;

m[i] [J]1=INF; for(int k=i;k<j;k++) m[i][j]l=min(m[i][7],

m[i] [k]+m[k+1] [J]+p[i-1]*p[k]*p[J]); }

printf ("%d", m[l][n-1]); return 0; }

Time Complexity: O(n”3)

Q77. Activity Selection (Greedy)

Max non-overlapping activities.

#include <stdio.h>

#include <stdlib.h>

struct Act{ int s,f; };

int cmp (const void*a,const void*b){ return ((struct Act*)a)->f -
((struct Act*)b)->f; }

int main(){ struct Act al]l={{1,2},{3,4},1{0,6},{5,7},{8,9},1{5,9}}; int
n=6; gsort(a,n,sizeof (struct Act),cmp); int cnt=1,last=0; for (int
i=1l;i<n;i++) if(ali].s>=allast].f){ cnt++; last=i; } printf("%d",cnt);
return 0; }

Time Complexity: O(n log n)

Q78. Job Sequencing with Deadlines (Greedy)

Maximize profit.

#include <stdio.h>
#include <stdlib.h>

struct Job{ int id,dead,profit; };

int cmp (const void*a,const void*b){ return ((struct Job*)b)->profit -
((struct Job*)a)->profit; }

int main(){ struct Job
j[1={{1,2,100},{2,1,19},{3,2,27},{4,1,25},{5,3,15}}; int
n=5,slot[10]={0},res=0;

gsort (j,n,sizeof (struct Job),cmp) ;

for (int i=0;i<n;i++) for (int t=j[i].dead; t>0; t--) if(!slot[t]){
slot[t]=1; res+=j[i].profit; break; }

printf ("%$d",res); return 0; }

Time Complexity: O(n”2)

Q79. Fractional Knapsack (Greedy)

Max value with fractions.

#include <stdio.h>

#include <stdlib.h>

struct Item{ int w; double v; };

int cmp (const void*a,const void*b){ double r=((struct Item*)Db)-

>v/ ((struct Item*)b)->w - ((struct Item*)a)->v/((struct Item*)a)->w;
return (r>0)-(r<0); }

int main(){ struct Item it[]={{10,60},{20,100},{30,120}}; int n=3,W=50;
gsort (it,n,sizeof (struct Item),cmp); double val=0; for(int i=0;i<n &&
W>0;4i++){ 1if(it[i] .w<=W){ W-=it[i].w; val+=it[i].v; } else { val+=
it[i].v * ((double)W/it[i].w); W=0; } } printf("%$.2f",val); return 0; }

Time Complexity: O(n log n)

Q80. Edit Distance (Levenshtein)

Min edits to convert string A to B.

#include <stdio.h>
#include <string.h>
int min3(int a,int b,int c¢){ int m=a<b?a:b; return m<c?m:c; }

int main(){ char a[]="kitten", b[]="sitting"; int
m=strlen(a),n=strlen(b), D[m+1l] [n+1];

for (int i=0;i<=m;i++) D[i][0]=i; for(int J=0;j<=n;Jj++) DI[O0][]j1=73;
for (int i=1;i<=m;i++) for(int j=1;j<=n;Jj++) D[i]l[]jl= (al[i-1]==b[j-11)°7
D[i-1][j-1] : 14+min3(D[i-1]1[3],D[1]1[J-11,D[1i-11[3-11);

printf ("$d",D[m] [n]); return 0; }

Time Complexity: O(mn)

Q81. Trie Delete (Word Deletion)

Delete word from trie (mark end=0 if leaf).

// Outline: recursively delete child; if child becomes empty and not
end, free it; otherwise stop.

// Full code omitted for brevity.

int main() { return 0; }

Time Complexity: O(m)

Q82. Graph Coloring (Backtracking)

Color graph with m colors.

// Outline: try colors 1..m for each vertex, backtrack on conflict.
int main() { return 0; }

Time Complexity: Exponential

Q83. N-Queens (Backtracking)

Place N queens on NxN board.

#include <stdio.h>

#define N 8

int col[N], d1[2*N], d2[2*N], sol=0;

void solve(int r){ if (r==N){ sol++; return; } for (int c=0;c<N;c++)
if(!'collc] && !dl[r-c+N] && !d2[r+c]){ col[cl=dl[r-c+N]=d2[r+c]=1;
solve (r+l); collc]=dl[r-c+N]=d2[r+c]=0; } }

int main(){ solve(0); printf ("%d",sol); return 0; }

Time Complexity: O(N!)

Q84. Sudoku Solver (Backtracking, 9x9)

Solve Sudoku using backtracking.

// Outline due to length: choose empty cell, try 1..9, check
row/col/subgrid, recurse; backtrack on failure.
int main(){ return 0; }

Time Complexity: Exponential

Q85. Optimal BST (DP)

Min expected search cost.

// Outline: DP over ranges with frequency arrays; m[i][j]=min over
roots (m[i] [r-1]+m[r+1][J]+sumFreq).
int main() { return 0; }

Time Complexity: O(n”3)

Q86. AVL Deletion (Outline)

Delete and rebalance.

// Outline: BST delete then fix heights and rotate based on balance
factor.
int main(){ return 0; }

Time Complexity: O(log n)

Q87. B-Tree Insertion (Outline)

Split child on overflow.

// Outline: search leaf; if full, split (t-1 keys left/right), promote
middle key to parent; may cascade splits.
int main(){ return 0; }

Time Complexity: O(log n)

Q88. Cuckoo Hashing (Concept)

Two tables, two hash functions.

// Outline: place key in tablel; if occupied, kick out resident to its
alternate position; detect cycles -> rehash.
int main(){ return 0; }

Time Complexity: Amortized O(1)

Q89. Johnson’s Algorithm (Outline)
All-pairs shortest paths in sparse graphs.

// Outline: add super-source, Bellman-Ford to compute h(v); reweight
edges w' (u,v)=w(u,v)+h(u)-h(v); run Dijkstra from each vertex.
int main(){ return 0; }

Time Complexity: O(VE + V*2 log V)

Q90. Shortest Path DAG (DP)

Topo order + relax.

#include <stdio.h>

#define INF 1e9

// Outline: compute topo order; initialize dist[src]=0; relax edges in
topo order.

int main() { return 0; }

Time Complexity: O(V+E)

Q91. Articulation Points (Tarjan)

Find cut vertices.

// Outline: DFS timestamps, low-link values; a root with >=2 children
or u where low[v] >= disc[u] is AP.
int main() { return 0; }

Time Complexity: O(V+E)

Q92. Bridges in Graph (Tarjan)

Find critical edges.

// Outline: DFS with discovery/low arrays; edge (u,v) 1is bridge if
low[v] > disc[u].
int main() { return 0; }

Time Complexity: O(V+E)

Q93. KMP String Matching

Pattern search using lps[] array.

#include <stdio.h>

#include <string.h>

void lpsb (char* p,int m,int lps[]){ int len=0; 1lps[0]=0; for(int
i=1;i<m;){ if(pl[i]l==pllen]) lps[it++]=++len; else if(len) len=lps[len-
1]1; else lps[i++]1=0; } }

void kmp(char* t,char* p){ int n=strlen(t),m=strlen(p), lps[m];
lpsb(p,m,1lps); for(int i=0,3=0;i<n;){ if(t[il==p[J]){ i++; J++;
if(j==m){ printf ("Found at %d\n", i-7j); j=lps[j-11; } } else 1if (j)
Jj=lps[j-1]; else i++; } }

int main(){ char t[]="abxabcabcaby", pl]l="abcaby"; kmp(t,p); return 0;
}

Time Complexity: O(n+m)

Q94. Rabin—Karp String Matching
Rolling hash matching.

#include <stdio.h>
#include <string.h>
#define d 256
#define g 101

void rk(char* t,char* p){ int n=strlen(t),m=strlen(p); int h=1; for (int
i=0;i<m-1;i++) h=(h*d)%qg; int ph=0, th=0;

for (int i=0;i<m;i++){ ph=(d*ph + p[i])%g; th=(d*th + t[i])%qg; }

for (int i=0;i<=n-m;i++){ if (ph==th){ int j=0; while (j<m &&
t[i+j]l==p[]J]) J++; if(j==m) printf ("Found at %d\n", 1i); } if (i<n-m) {
th=(d* (th - t[il*h) + t[i+m])%g; if(th<0) th+=qg; } } }

int main() { char t[]="GEEKS FOR GEEKS", p[]="GEEK"; rk(t,p); return 0;
}

Time Complexity: Average O(n+m)

Q95. Trie Auto-Complete (Prefix Listing)

DFS all words with given prefix.

// Outline: navigate to prefix node, then DFS collecting words.
int main(){ return 0; }

Time Complexity: O(k + output)

Q96. Segment Tree (Range Sum Query)

Build and query sums.

#include <stdio.h>

int st[400005], a[l00005];

int build(int p,int 1,int r){ if(l==r) return stlpl=alll; int
m=(l+r)/2; return st[pl=build(p*2,1l,m)+build(p*2+1,m+1l,r); }

int query(int p,int 1,int r,int i,int J){ 1f(i>r||j<l) return O;

if (i<=1&&r<=j) return st[pl; int m=(l+r)/2; return
query(p*2,1,m,i,Jj)+tquery(p*2+1,m+l,r,1i,3); }

void update (int p,int 1,int r,int idx,int wval){ if(l==r){ stlpl=val;
return; } int m=(l+r)/2; if (idx<=m) update(p*2,1,m,idx,val); else
update (p*2+1,m+1l,r,idx,val); stlpl=stlp*2]+st[p*2+1]; }

Time Complexity: Build O(n), Query/Update O(logn)

Q97. Fenwick Tree (BIT) for Prefix Sum
Point update, prefix query.

#include <stdio.h>

#define N 100005

int bit [N+1];

void add(int i,int v){ for(; 1i<=N; i+=ig&-1) bit[i]+=v; }

int sum(int i){ int s=0; for(; i>0; i-=i&-1i) s+=bit[i]; return s; }

Time Complexity: O(log n)

Q98. Binary Search on Answer
Min capacity to ship within D days (pattern).
// Outline: binary search on feasible answer; check() greedily verifies

feasibility.
int main(){ return 0; }

Time Complexity: O(n log R)

Q99. Two Stacks in One Array

Optimize space.

#include <stdio.h>

#define MAX 100

int a[MAX], tl=-1, t2=MAX;

void pushl (int x){ if (tl+l==t2) return; al[++tl]l=x; }
void push2 (int x){ if(tl+l==t2) return; al--t2]=x; }
int popl(){ return tl==-172-1l:a[tl--]1; }

int pop2(){ return t2==MAX?-l:a[t2++]; }

Time Complexity: 0(1)

Q100. Circular Linked List: Josephus

Find survivor position.

#include <stdio.h>

int josephus (int n,int k) { int r=0; for(int i=1;i<=n;i++) r=(r+k)%i;
return r+l; }

int main(){ printf ("%d", josephus(7,3)); return 0; }

Time Complexity: O(n)

Q101. LRU Cache (Linked List + Hash Map Outline)
Typical design question.

// Outline: doubly linked list for recency, hashmap for O(1l) lookup;
move node to head on access; evict tail on capacity.
int main() { return 0; }

Time Complexity: O(1) ops

Q102. Binary Search Tree to DLL (Inorder)
Convert BST to sorted doubly linked list.

// Outline: inorder traverse, link prev and current nodes to form DLL.
int main(){ return 0; }

Time Complexity: O(n)

